文章详情

  1. 您现在的位置:首页
  2. 资讯中心
  3. 行业资讯
  4. 详情

GaN电源解决方案新突破

实现更加高效的电力转换是应对当前增长的人口和能源需求的一个关键技术目标。

能够有效推动这一目标达成的重要创新就是在电源应用中使用氮化镓 (GaN)。GaN是一种已经成熟的半导体材料,广泛应用于LED照明,并在无线应用中发挥越来越重要的作用。目前,随着工艺的进步和缺陷率的不断降低,GaN在交直流电力转换、改变电压电平、并且以一定数量的函数确保可靠电力供应的电子电源中的优势越来越明显。基于GaN的开关功率晶体管可实现全新电源应用,与之前使用的硅材料 (Si) 晶体管相比,在高压下运转时,性能更高,损耗更低。GaN的高频操作特性可以在保持高效率的同时提高性能。GaN器件使用的是一种适合于现有硅制造流程的硅上氮化镓(GaN-on-Si) 工艺。如果尺寸更为小巧的GaN器件能够实现同样的电流功能,那么最终GaN晶体管就会和硅材料晶体管具有同样性价比。这将增大GaN器件对于大型工业设备到最小型手持类设备等各类系统的吸引力。由于它在这些方面的优点,GaN将首先在更高性能电源设计中占据一席之地。这些设计在工作频率和精确开关特性方面要求严格。然而,GaN在更高效电源转换方面的发展前景一定能够满足这方面的要求。

目前,电源设计人员正在重新思考他们设计的电路,试图寻找能充分发挥全新GaN晶体管潜能又能避免负面影响的方法来创造电源系统。思考这类问题时通常的思路是在现有组件中寻找解决方案—GaN开关,Si开关驱动器,高速开关控制器,以及功率电感器、变压器和电容器等均是总体设计中的部件。生产电源产品的集成电路 (IC) 制造商如果能用共同设计的器件提供系统级解决方案,甚至在模块封装中集成多个芯片,就能够大大提高了客户的设计可能性。

德州仪器作为行业领先的电源应用IC解决方案供应商,在提供这些类解决方案具有很大的优势。借助其创新型制造工艺、电路和封装技术,TI不断为那些希望最大限度发挥GaN作用的设计人员提供所需器件。

GaN在电源链中的位置

大多数常见的电子设备由开关模式电源 (SMPS) 供电运行,这些电源将交流电高效地转换为直流电(AC到DC),并且将110-120V或者220-240V的分级线电压降压至12V,5V,3.3V,以及系统组件需要的更低电压。这些功能通常用于消费类电子设备和数据中心,但是SMPS也被用于DC至DC转换,并且用于生成可再生能源逆变器中的更高电压电平,以及汽车电子设备,工业设备和其它类型的高功率系统。

图1显示的是一个普通SMPS的流程图。一个输入电压,通常为高压低频交流电,被整流为直流电。线路滤波器用于阻断电源中逐渐形成的高频率,阻止其传送回源线路。一个高频电源开关—SMPS的核心—将DC信号转换为一个脉冲电压波形。开关的输出被转换为所需的电压,并被过滤为低压系统所要求的稳定输出电平。控制器用输出反馈提供脉宽调制 (PWM) 信号给电源开关驱动器,从而提供稳压功能。信号的脉宽随负载要求的变化而增加或减少。

GaN(氮化镓)将推动电源解决方案的进步

图1.开关模式电源的一般功能。

一直以来电源开关都是硅材料MOSFET(金属氧化物半导体场效应晶体管)所制,但是现在正被GaN FET所取代。

根据系统要求的不同,可使用很多种不同的设计拓扑结构,对电源开关的安排也将有所不同,从单FET升压转换器,包含两个FET的设计,最多到四个FET的全桥转换器。此开关和其转换器形成了一个非常灵敏的设计区域,它们必须在控制器的指令下精确执行相关功能。如果不能做到这一点的话,电源系统就会变得不稳定。此外,已调制电压的快速上升和下降有可能导致噪音进入反馈回路,从而造成电源系统不稳定。

对于所有电网连接的系统的一个要求就是电网内与系统外的隔离,以便为下游设备提供安全保护。另外一个注意点则是电源转换的高频运行一定不能干扰电网的电力传输,也不能在供电线路上生成噪声。GaN器件满足了这一隔离要求,并且通过较高频率运行减少了电磁干扰。这个较高频率可以减少隔离变压器和输入滤波器的大小。

GaN在SMPS系统中的应用优势

GaN相较于硅在电源开关方面拥有的一个重要优势是其在高电压下更低的损耗。它的打开和关闭所需电能也更少。在过去几年间,Si开关的性能已大幅提高,但在相同尺寸和高压下,GaN提供的重大改进是Si不太可能达成的。目前,Si MOSFET对于GaN来说有相当大的成本优势,但是随着时间的推移,这一成本方面的差异将会缩小。

GaN开关器件支持宽范围的工作电压。它们使电源设计人员能够在保持极大范围输入和输出电压的所需频率的同时以较高频率运行,从而减小了解决方案的物理尺寸。GaN最适合的应用往往是那些需要尽可能小尺寸的电源解决方案。

图2显示了GaN晶体管的基本结构。正如之前所谈到的,GaN材料位于一块Si基板上。这种设计可以使我们在充分利用GaN的同时,也可以获得Si处理的数十年发展所带来的优势。其中一个优势就是较高的带隙电压。

GaN(氮化镓)将推动电源解决方案的进步

图2.增强型模式GaN FET的横截面

半导体区别于其它材料的主要特性是带隙能—将材料从绝缘体变为导体所需的电压跳变。GaN提供的3.2电子伏特 (eV) 的带隙能大约是Si所能提供的带隙能的3倍。理论上,更高的带隙意味着较高温度下的更佳性能,其原因是在物质变为导电前可耐受更多的热量。今后,这一特性有可能提升汽车、工业和其它高温环境中的GaN性能。

SMPS设计中的GaN学习曲线

尽管GaN优势众多,这项技术才刚刚开始在电源设计中找到用武之地。之前LED和无线应用中的GaN让人们看到了将这项技术用于电源应用的希望。但是,要把GaN用在功率FET中曾经需要重大的工艺和器件开发,而这些开发已经延缓了相关产品的发展。此外,全新FET与之前使用的Si材料器件间的不同使得IC供应商和系统设计人员不得不小心前行,逐步解决设计难题。传统GaN器件通常处于接通或耗尽模式,而Si MOSFET是一般情况下处于关闭状态的增强模式器件。为了提供针对Si MOSFET的直接替代器件,GaN FET开关供应商或者重新设计他们的产品,使其可在在增强模式运行,或者使用另外的开关与其串联,以提供正常的关闭功能。

用GaN FET替代Si MOSFET只是重新设计的开始。GaN晶体管的高频处理能力要求开关驱动信号具备更大计时精度,而这些开关对于封装、互连和外部源的寄生阻抗高度敏感。可高速开闭GaN开关的集成型硅基GaN驱动器已经推动着采用GaN的SMPS设计向前发展。成熟的Si处理可实现这些非常精确的、高频可调谐驱动器的开发。


12