文章详情

  1. 您现在的位置:首页
  2. 资讯中心
  3. 技术资料
  4. 详情

用于接近传感的反向偏置开关编程

编程是通过控制施密特触发器的偏移来完成的,如图#1 中的功能框图所示。相应的数据表中给出了对器件进行编程的方法。

图 1 可编程开关功能框图

参考目标的磁通密度与位置(旋转度)的关系图有助于说明编程及其对霍尔效应器件性能的影响,请参见图 #2。每条曲线代表设备的不同安装气隙;仅使用一颗齿来代表用于接近感测的典型铁质目标。一块平移而不是旋转的金属会生成一个类似的图表,其水平轴以毫米为单位而不是度数。由于接近传感应用可以使用旋转或平移目标,因此本文使用旋转作为约定。参考目标的详细描述可以在附录 A 中找到。

图2 参考目标的通量图

请注意,任意施密特阈值将代表图形上的两条水平线,由 20 高斯的典型磁滞分隔开。正向的开关点称为 BOP(磁力操作点),负向的开关点称为 BRP(磁力释放点)。当信号从波谷到齿时,输出在 BOP 处切换;当信号从齿到波谷时,输出在 BRP 处切换。(参考图#3)

图3 谷齿区域放大图

图#4 是 BOP 开关点从谷到齿的进一步放大。绘制两条垂直线来显示给定 BOP 的安装气隙为 0.75mm 和 2.25mm 时的开关点位置。请注意,在 0.75mm 至 2.25mm 的气隙范围内,气隙之间的差异约为 1.5°。这是给定任意阈值的安装气隙上预期的相对精度。

接近感应

在接近传感情况下,开关点被编程以实现所需的位置,该位置可以是图#2、3和4的水平轴上的毫米或度数。编程使得可以补偿制造过程中产生的机械偏移,这可以严格控制开关位置。例如:如果图 #4 中所需的开关点为 12°,并且设备安装在 0.75mm 气隙处,则 BOP 输入应设置为大约 400 高斯,比图中所示的水平更高。如果设备安装在 2.25mm 气隙处,则 BOP 应设置为略高于 200 高斯或略低于图 #4 所示的值。