文章详情

  1. 您现在的位置:首页
  2. 资讯中心
  3. 技术资料
  4. 详情

DC- DC升压调节器在低功耗便携式系统的应用

便携式电子器件(如智能手机、GPS导航系统和平板电脑)的电 源可以来自低压太阳能电池板、电池或AC-DC电源。电池供电系 统通常将电池串联叠置以实现更高的电压,但此技术由于空间不 足未必总是可行。开关转换器使用电感磁场来交替存储电能,并以不同电压释放至负载。因为损耗很低,所以是个不错的高效选 择。连接至转换器输出端的电容可降低输出

便携式电子器件(如智能手机、GPS导航系统和平板电脑)的电 源可以来自低压太阳能电池板、电池或AC-DC电源。电池供电系 统通常将电池串联叠置以实现更高的电压,但此技术由于空间不 足未必总是可行。开关转换器使用电感磁场来交替存储电能,并以不同电压释放至负载。因为损耗很低,所以是个不错的高效选 择。连接至转换器输出端的电容可降低输出电压纹波。本文所讨论的升压, 转换器提供较高电压;而前一篇文章1所讨论的降压转换器提供较低输出电压。内置FET作为开关的开关转换器称为开关调节器,2 需要外部FET的开关转换器则称为开关控制器.3 图1显示采用两节串联的AA电池供电的典型低功耗系统。电 可用输出范围约为1.8 V至3.4 V,而IC工作时需要1.8 V和5.0 V 电压。升压转换器可在不增加电池单元数量的情况下提升电 压,从而为WLED背光、微型硬盘驱动器、音频设备和USB外 设供电,而降压转换器可为、内存和显示器供电。

图1.典型低功耗便携式系统 电感阻碍电流变化的倾向可提供升压功能。充电时,电感用作 负载并存储电能;放电时,可用作电源。放电过程中产生的电 压与电流变化速率相关,与原始充电电压无关,因此可提供不 同的输入和输出电平。 升压调节器包括两个开关、两个电容和一个电感,如图2所示。 非交叠开关驱动机制确保任一时间只有一个开关导通,避免发 生不良的直通电流。在第1阶段(tON),开关B断开,开关A闭合。 ON电感连接到地,因此电流从VIN流到地。由于电感端为正电压,因此电流增大,使电能存储于电感中。在第2阶段(tOFF), 开关A断开,开关B闭合。电感连接到负载,因此电流从VIN流到负载。由于电感端为负电压,因此电流减小,电感中存储的能量 释放到负载中。

图2.降压转换器拓扑结构和工作波形 注意,开关调节器既可以连续工作,也可以断续工作以连续导通模式 (CCM), 工作时,电感电流不会降至0;以断续导通模式 (DCM), 工作时,电感电流可以降至0。 电流纹波,在图2中显示为ΔIL 使用公式ΔIL = (VIN ? tON)/L.计算。平均电感电流流入负载,而纹波电流流入输出电容。

生涯调节器集成振荡器、PWM控制环路和开关FET 图3.升压调节器集成振荡器、PWM控制环路和开关FET 使用肖特基二极管代替开关B的调节器定义为异步 (或非同步), 调节器,而使用FET作为开关B的调节器定义为同步调节器。 图3中,开关A和B已分别使用内部NFET和外部肖特基二极管 来实施,从而形成异步升压调节器。对于需要负载隔离和低关 断电流的低功耗应用,可添加外部FET,如图4所示。将器件 的EN引脚驱动至0.3 V以下便可关断调节器,使输入与输出完 全断开。